Виды элементов солнечных батарей, их особенности и нюансы использования


Виды элементов солнечных батарей, их особенности и нюансы использования
Вы уже знаете о преимуществах модульных зданий КОНВЕЙТ?
Выбрать здание

В энергосистемах разного уровня и направленности (как промышленных, так и частных) возрастает популярность солнечных батарей. Преимущества их использования понятны и неоспоримы, что прежде всего касается экономичности их работы.

Солнечные источники энергии не зависят от центральных систем сбережения энергии, способствуют значительному снижению затрат на коммунальные расходы. Кроме того, они просты в эксплуатации и абсолютно экологичны и безопасны. В настоящее время существует несколько видов солнечных элементов, каждый из которых отличается особенностями производства, способу модификации солнечной энергии в электрическую.

Особенности работы солнечных батарей. Фотоэффект

Принцип работы этих элементов основан на процессе трансформации энергии солнечных лучей в электрическую энергию. Внешне это выглядит следующим образом: солнечные лучи падают на пластину, в результате чего указатель индикатора показывает величину электрического тока, получаемого в результате. Это явление можно объяснить с точки зрения физики. Оно носит название «фотоэффект» и его сущность заключается в способности некоторых видов материалов вырабатывать электричество от солнца.

Принцип действия фотоэффекта основан на функционировании электронов. Электроны, находящиеся в составе некоторых веществ (среди них, например, кремний), осуществляют поглощение потока солнечных лучей. Результат: создание и получение электронами импульса, который способствует их выталкиванию из орбит. В итоге происходит создание эффекта постоянного фототока, который представляет собой поток движущихся в одном направлении электронов.

Подобное описание является самым простым объяснением сложного процесса работы солнечных элементов энергии. Дело в том, что появление фотоэффекта возможно только в том случае, если обеспечено объединение двух типов полупроводников. Полупроводники первого типа отличаются нехваткой электронов, а второго типа – их избыточным количеством. При их объединении получаются солнечные батареи, имеющие в конструкции два слоя, представляющего собой эти полупроводники.

Фотоэлементы осуществляют свое взаимодействие по следующей схеме. Расположенный на верхних позициях структуры n-проводник подвергается прямому воздействию солнечных лучей, результатом которого является выбрасывание электронов из орбит. Вследствие создания добавочного энергетического импульса происходит переход частиц в проводник р типа. Результат: формирование направленного потока движения частиц. Для сбрасывания полученного фототока на пластины из полупроводников устанавливают нагрузку и тонкие проводниковые элементы.

Чаще всего в роли полупроводников обоих типов в составе солнечных элементов используют кремний с различными добавками. Дело в том, что этот химических элемент обладает массой преимуществ, среди которых простота в добыче и обработке, дешевизна, минимизация затрат и подходящие физические характеристики. Среди недостатков этого элемента в качестве основы для создания полупроводников является небольшая продуктивность, которая редко достигает более 20 % преобразования энергии. Некоторые химические вещества обладают более высоким показателем КПД при преобразовании солнечной энергии в электричество, но их использование нерентабельно из-за сложностей добычи и промышленной обработки.

Кремний лежит в основе производства солнечных батарей нескольких типов: поликристаллических, монокристаллических и тонких пленочных. Каждый тип отличается особым набором свойств и определяет основную отрасль применения.

Поликремний в составе фотоэлементов

Поликристаллические ячейки кремния отличаются неоднородной структурой темного цвета и имеют квадратную форму. В поликремнии содержится небольшой процент примесей.

Продуктивность работы поликремниевых ячеек, которая составляет около 17 %, ниже, чем монокремниевых (более 20%). Однако по ряду причин, включающих легкость выращивания поликремниевых кристаллов, минимум затрат на данный процесс, поликремниевые батареи намного дешевле.

Неравномерная структура поверхности этих ячеек определяет неравномерное поглощение солнечных лучей. Это способствует, с одной стороны, к большим потерям энергии, а с другой – снижению степени зависимости от траектории движения Солнца.

Монокремниевые фотоэлементы

Монокристаллический кремний, а точнее фотоэлементы на его основе, легко узнаваемы. Они отличаются ярким синим цветом, ровной и однородной поверхностью. Производство таких ячеек осуществляется из монокристаллов кремния, не имеющего примесей. Благодаря этому, такие ячейки отличаются высокими показателями качества и наиболее продуктивны. Их форма: квадрат со срезанными углами.

Характеристики монокремниевых фотоэлементов

Они отличаются самым высоким КПД при трансформации энергии. Причина заключается в однородности их состава, благодаря которой свет поглощается максимально равномерно и преобразуется в фотопоток. Точные показатели энергетической эффективности этих элементов зависят напрямую от свойств кристалла, процентного содержания в нем примесей, а также качества технологий их выращивания.

Монокристаллические солнечные батареи отличаются следующими качествами:

  • независимость равномерности выходных свойств от погоды. Даже высокий уровень облачности и холодное время года (при отрицательных температурах) не влияет на КПД таких батарей.
  • гибкость, предотвращающая поломки вследствие физического воздействия.

Стоимость монокремниевых батарей превышает цену на поликристаллические.

Фотоэлементы на основе аморфного кремния

Их наиболее распространенное название «гибкие панели». Они отличаются гибкой структурой из тонких пленок. Их производство основано на использовании аморфного кремния или теллурида кремния. В настоящее время активно ведутся разработки по применению в качестве основного вещества органических компонентов.

Продуктивность гибких панелей зависит от типа полупроводника. Кремниевые панели дают 10% КПД, наиболее современные компоненты – 15-20 %.

Характеристики гибких тонкопленочных панелей:

  • универсальность монтажа (возможен на любых формах);
  • высокий уровень генерирования энергии при рассеянном падении лучей;
  • маленькая толщина, достигающая около 1 мкм;
  • низкая себестоимость и совокупная цена;
  • высокие показатели эффективности при использовании в мощных системах (свыше 10 кВт).

Солнечные батареи тонкопленочного типа находят широкое применение в регионах с преобладанием облачной погоды, а также в жарких регионах.

К минусам этих элементов можно отнести их габариты, превышающие при аналогичном уровне мощности размеры кристаллических в два раза.

Транзисторные фотоэлементы

Фотоэлементы в составе солнечных батарей могут быть изготовлены из вышедших из эксплуатации транзисторов. Их можно сделать даже самостоятельно, в домашних условиях. Для этого потребуются транзисторы из полупроводников, с которых нужно снять крышки (для открытия переходов полупроводников). КПД таких фотоэлементов минимален, но есть возможность их объединения друг с другом в блоки, что будет способствовать в конечном итоге увеличению выходных параметров. Такие батареи подойдут для зарядки светильников, часов и маленьких аккумуляторов.


Галерея

Узнать цены и ознакомиться с типовыми проектами модульных зданий КОНВЕЙТ. Возможно производство зданий по индивидуальным проектам.